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Abstract 24 

Whole genome duplications have occurred in the recent ancestors of many plants, fish, and amphibians.  25 

Signals of these whole genome duplications still exist in the form of paralogous loci.  Recent advances 26 

have allowed reliable identification of paralogs in genotyping by sequencing (GBS) data such as that 27 

generated from restriction-site associated DNA sequencing (RADSeq); however, excluding paralogs from 28 

analyses is still routine due to difficulties in genotyping.  This exclusion of paralogs may filter a large 29 

fraction of loci, including loci that may be adaptively important or informative for population genetic 30 

analyses.  We present a maximum-likelihood method for inferring allele dosage in paralogs and assess its 31 

accuracy using simulated GBS, empirical RADSeq, and amplicon sequencing data from Chinook salmon.  32 

We accurately infer allele dosage for some paralogs from a RADSeq dataset and show how accuracy is 33 

dependent upon both read depth and allele frequency.  The amplicon sequencing dataset, using RADSeq-34 

derived markers, achieved sufficient depth to infer allele dosage for all paralogs.  This study demonstrates 35 

that RADSeq locus discovery combined with amplicon sequencing of targeted loci is an effective method 36 

for incorporating paralogs into population genetic analyses. 37 

Introduction 38 

Gene and genome duplication events provide raw material for evolution through release of duplicate gene 39 

copies (Ohno 1970).  Gene duplication can result in adaptation when one of the descendent copies gains a 40 

new function or speciation when alternative silencing of genes leads to reproductive incompatibilities 41 

between populations (Lynch & Conery 2000).  When duplicate genomic regions are retained intact, the 42 

efficiency of selection to drive evolution is enhanced due to the increase in effective population size that 43 

results from polyploidy (Allendorf et al. 2015).   44 

There are multiple lines of evidence suggesting the general importance of duplication in evolution.  45 

Genome duplication events have coincided with the origin of vertebrates (Holland et al. 1994) and 46 

teleosts (Crow et al. 2006).  Gene duplication has been shown to facilitate adaptation to harsh 47 

environments (Kondrashov 2012) and polyploidy is thought to have enabled survival of flowering plants 48 

during the Cretaceious-Tertiary extinction event (Fawcett et al. 2009).  Duplication has also been linked 49 

to speciation in multiple taxa:  (1)  elevated diversification often follows whole genome duplications in 50 

angiosperms (Tank et al. 2015) , (2) a high rate of gene duplication has been implicated in the species 51 

radiation of African cichlids (Brawand et al. 2014), and (3) divergent evolution of duplicate genes leads 52 

to loss of fitness in hybrid A. thaliana (Bikard et al. 2009).   53 

Duplication of individual genes and gene families has also facilitated adaptation in many species 54 

(Kondrashov 2012); example adaptations include immune function (Zhang et al. 2015; Sackton et al. 55 
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2017), heavy metal tolerance (Chow et al. 2012), pesticide resistance (Lenormand et al. 1998), and 56 

domestication related traits (Liu et al. 2009).  While there has been considerable study on the impact of 57 

individual duplicated genes and general patterns of evolution following genome duplication, population 58 

genetics studies using genotyping by sequencing (GBS) methodologies typically exclude paralogs from 59 

analysis (discussed below).  This has the effect of excluding potentially important loci as well as entire 60 

genomic regions in species with ancestral genome duplications. 61 

Paralogous loci can arise through whole-genome duplication, autopolyploidy or allopolyploidy, or 62 

duplication of chromosomal regions through segmental or tandem duplication.  Ancestral whole-genome 63 

duplications have occurred in many species of plants (Fawcett et al. 2009; Wang et al. 2013; Clevenger & 64 

Ozias-Akins 2015) but have also taken place in some species of fish (Ohno et al. 1968; Ferris & Whitt 65 

1980; Allendorf & Thorgaard 1984) and amphibians (Mable et al. 2011; Schmid et al. 2015).  While less 66 

common, some taxa exhibit extensive paralogy as a result of segmental or tandem duplications such as 67 

salamanders (Sun et al. 2012) and lungfish (Biscotti et al. 2016).  These various mechanisms of elevating 68 

ploidy can lead to complicated patterns where different ploidy levels can exist within species (Gompert & 69 

Mock 2017) and within individuals (Allendorf & Thorgaard 1984), copy number variation can occur 70 

within genes (Lighten et al. 2014), and paralogs can exhibit disomic or polysomic inheritance within the 71 

same chromosome (Allendorf & Thorgaard 1984).  For this study we will focus on tetraploid paralogs 72 

that are undifferentiated and genotyped as a single locus; these loci are prevalent in organisms with 73 

ancestral whole-genome duplications and are likely the most common type of paralog encountered in 74 

genomic analyses. 75 

In GBS data, paralogs are frequently collapsed into a single locus due to sequence similarity and the short 76 

sequence reads generated with current sequencing technologies.  This presents two distinct difficulties in 77 

the analysis of paralogs: identification and genotyping.  In the past, paralogs that have been collapsed into 78 

a single locus could only be reliably identified through alignments to a reference genome or by 79 

genotyping haploid individuals; however, methods have recently been developed that leverage 80 

populations-level analysis of GBS data to distinguish paralogous from non-paralogous loci  (Verdu et al. 81 

2016; McKinney et al. 2017; Willis et al. 2017) as well as identify individuals with elevated ploidy levels 82 

(Gompert & Mock 2017).  Once identified, paralogous loci are often excluded from population genetic 83 

analysis because allele dosage (copy number of each allele) is difficult to quantify for heterozygous 84 

individuals (reviewed in Dufresne et al. 2014).   85 

Diploid and tetraploid loci differ in the allele dosages, and resulting allele ratios, that are possible within 86 

heterozygous individuals.  Diploid loci have a single heterozygous genotype (AB) with an allele ratio of 87 

1:1.  Tetraploid paralogs (duplicate loci) have up to three heterozygous genotypes with allele ratios of: 88 
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AAAB (3:1); AABB (2:2); ABBB (1:3).  A special case where tetraploid paralogs are inherited 89 

disomically (diverged duplicate loci) and one of the loci is fixed for an allele results in only two 90 

heterozygous genotypes, for example AAAB and AABB if the A allele is fixed in one copy of the 91 

paralog.  Theoretically, these different allele dosages can be identified based on observed reads; however, 92 

random sampling of alleles during sequencing causes the observed read ratios for heterozygotes to deviate 93 

from the expected values (read ratios for homozygotes can only deviate due to sequencing error).  This 94 

problem is exacerbated with low sequencing coverage due to the stochastic variation in the number of 95 

sequence reads generated for each allele.    Uncertainty in estimating allele dosage has led to the common 96 

practice of filtering paralogs from GBS data, without any attempt at genotyping or inclusion in population 97 

genetic analyses (e.g. Hecht et al. 2013; Dufresne 2016; Verdu et al. 2016; Tarpey et al. 2017).  98 

Recent studies that attempted to incorporate paralogs into population genetic analyses using GBS data 99 

revealed potential signals of selection (Limborg et al. 2017; Waples et al. 2017).  Limborg et al. (2017) 100 

estimated population allele frequencies directly from read counts for each allele using PolyFreqs 101 

(Blischak et al. 2016) while Waples et al. (2017) scored only the presence/absence of each allele within 102 

each individual.  These methods of incorporating paralogs into population genetic analysis can be useful, 103 

particularly when sequence depth is low, but are still limited because they do not provide accurate allele 104 

dosage.  Resolving allele dosage is vital because individual genotypes are fundamental components of 105 

many population genetic analyses (Dufresne et al. 2014). 106 

Allele dosage has been successfully inferred using both fluorescent-based microarrays (Gidskehaug et al. 107 

2011) and with GBS when ultra-high depth sequencing was used (Lighten et al. 2014; Ferrandiz-Rovira 108 

et al. 2015; Biedrzycka et al. 2017); however, these methods are impractical for many studies for a 109 

variety of reasons.  Microarrays require development resources that are outside the scope of many non-110 

model organism studies.  Ultra-high depth sequencing has been used for targeted studies that generally 111 

genotype one or a few genes and achieve sequencing depths of up to tens of thousands of reads.  While 112 

useful for interrogation of individual genes or gene families, ultra-high depth sequencing is intractable for 113 

genome-wide population genetic analyses. 114 

Our goal was to identify a practical read depth and analysis pipeline to enable the scoring of dosage in 115 

duplicated genes detected in GBS data.  We introduce a maximum-likelihood method to genotype allele 116 

dosage in paralogs and evaluate accuracy in simulated tetraploid GBS data.  We then apply our method to 117 

a restriction-site associated DNA sequencing (RADSeq) and amplicon sequencing dataset from Chinook 118 

salmon, a species that retains ~17% of the paralogs from the salmonid whole-genome duplication 119 

(McKinney et al. 2017). 120 
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We found that genotype rate (proportion of individuals assigned a genotype) per locus was influenced 121 

both by read depth and minor allele frequency with low read depth and high minor allele frequency 122 

associated with reduced genotype rate.  Genotype rate relative to read depth varied by genotype with 123 

heterozygous genotypes requiring greater read depth to achieve 100% genotype rate than homozygous 124 

genotypes.  Simulation results showed that a genotype rate of > 95% for heterozygous genotypes was 125 

achieved at a read depth between 76 and 100, and > 99% was achieved at a read depth between 126 and 126 

150.  The RADSeq dataset had sufficient read depth to reliably genotype only low minor allele frequency 127 

loci.  The amplicon sequencing dataset had sufficient read depth to genotype all loci.  Combining our 128 

method of genotyping with reliable methods of paralog identification will allow future studies to 129 

incorporate paralogs into population genetic analyses. 130 

Materials and Methods 131 

Scoring allele dosage  132 

We constructed a polyploid genotyper (PolyGen) to consider all possible genotypes for a locus based on 133 

the number of alleles and ploidy of the locus.  Our genotype calls are based on allele dosage and do not 134 

distinguish among all possible chromosomal arrangements (e.g., AAAB = ABAA and ABAB =AABB).  135 

Allele dosage is inferred using a maximum likelihood algorithm that performs equations in the following 136 

steps: 137 

1) The relative dosage for each allele is calculated for each possible genotype.  For a tetraploid locus 138 

with two alleles the relative dosage for each possible genotype is:  139 

Genotype Allele A 

relative dosage 

Allele B 

relative dosage 

AAAA 1 0 

AAAB 0.75 0.25 

AABB 0.50 0.50 

ABBB 0.25 0.75 

BBBB 0 1 

 140 

2) The chance that a read will be sampled from a given allele, p(a), given a particular underlying 141 

genotype is a function of the relative dosage of the allele in the genotype as well as the error rate: 142 

 143 �(�)  = ��(�) ∗ (1 − �) + (1 − ��(�)) ∗ � 
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                                                                                                                                                        (1) 144 

Where ��(�) is the relative dosage of allele a and epsilon (ϵ) is the sequencing error rate. 145 

 146 

3) The overall loglikelihood of a genotype, L(g), is obtained by summing the relative dosage 147 

loglikelihoods for each allele: 148 

�(�)  =  � ln��(�)� ∗  ���
�  

                                                                                                                                                        (2) 149 

Where p(a) is the chance that a read will be sampled from allele a, �� is the count of observations 150 

of allele a, and there are n alleles. 151 

 152 

4) The two most likely genotypes are compared using a likelihood ratio test with one degree of 153 

freedom (Hohenlohe et al. 2010).  The most likely genotype is assigned if the likelihood ratio test 154 

is significant at α = 0.05, otherwise no genotype is assigned. 155 

 156 

We implemented this algorithm in an R script (File S1).  This algorithm is capable of genotyping loci 157 

with any number of alleles and any ploidy level but we evaluate it with only tetraploid loci as that is the 158 

most common ploidy level for paralogs. 159 

Simulated and Empirical Datasets 160 

Simulated data was used to assess the ability of PolyGen to reconstruct known genotypes through a range 161 

of read depths and allele frequencies.  An initial population of 2,000 individuals was constructed; for each 162 

paralogous locus, 2,000 genotypes were generated following Hardy-Weinberg expectations based on a 163 

uniform-random-assigned allele frequency between zero and one.  A total of 250 individuals were then 164 

randomly sampled from the full population to represent the study sample.  A total of 1,500 paralogous 165 

loci were generated; each locus was assigned an average read depth between 10 and 150 by randomly 166 

drawing from a discrete uniform distribution.  For each individual, the total number of reads for a locus 167 

was obtained by sampling from a Poisson distribution with the mean equal to the average depth for that 168 

locus.  The number of reads for the A allele was obtained by drawing from a binomial distribution where 169 

the number of trials equals the total read depth for the locus and the probability equals the proportion of 170 

that allele in the underlying genotype.  A sequencing error rate of 1% was simulated by modifying the 171 

allele probability.  The reads for the B allele were obtained by subtracting the reads for the A allele from 172 

the total reads.  Simulation was conducted in R (see File S2). 173 
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The allele frequency and average sequence depth per locus was varied to assess how these parameters 174 

influence paralog genotyping.  Genotype accuracy was assessed by comparing the genotypes inferred by 175 

PolyGen to the true simulated genotypes. 176 

We also used empirical data to evaluate the reliability of genotyping paralogs with GBS data given the 177 

read depth expectations that were determined in the simulations.  Empirical data were derived from both 178 

RADSeq and amplicon sequencing from three populations; the RADSeq dataset from these populations 179 

previously was used to choose a subset of markers for development into an amplicon sequencing panel 180 

(data not shown). 181 

RADSeq data were generated for three populations of Chinook salmon inhabiting the large Kuskokwim 182 

River drainage in Western Alaska, USA (Goodnews, George, and Necons rivers).  A total of 48 183 

individuals per population was sampled; DNA was extracted and sequencing libraries prepared with the 184 

SbfI enzyme following the methods of Baird et al. (2008) and Everett et al. (2012).  Samples were 185 

sequenced on a HiSeq 4000 with single-end 100bp reads; 96 samples were sequenced per lane.  Two 186 

rounds of sequencing were conducted and the volume of DNA for each individual adjusted in the second 187 

round of sequencing to reduce variation in sequence reads per individual (Prince et al. 2017).  Sequence 188 

data was processed with STACKS v1.31 (Catchen et al. 2011) using default settings with the following 189 

exceptions: process_radtags (-c -r -q -t 94), ustacks (-r --model_type bounded --bound_low 0 --190 

bound_high 0.05), cstacks (-n 2).  The STACKS catalog of variation was created using five individuals 191 

from each population and was combined with the catalog of variation from McKinney et al. (2017) to 192 

ensure consistent locus names between the studies.  Loci genotyped in at least 80% of the samples and 193 

with a minor allele frequency of 0.05 in one or more populations were output from STACKS as a .vcf file.  194 

Allele-specific read counts from the vcf were used as input to HDplot (McKinney et al. 2017) to identify 195 

paralogs and as input to PolyGen to genotype paralogs.   196 

A total of 59 paralogs from the RADSeq dataset were chosen to develop an amplicon sequencing panel.  197 

Amplicon sequencing (GTseq, Campbell et al. 2015) was conducted on an additional 48 individuals from 198 

each population.  Sequencing libraries were prepared following the methods of Campbell et al. (2015).  199 

These samples were sequenced in combination with other Chinook salmon samples and loci sequenced 200 

for another amplicon sequencing study (data not shown).  The total sequencing effort included 300 201 

individuals and 1,200 loci on a single lane of an Illumina HiSeq4000 with single-end 100bp reads.  A 202 

custom perl script was used to obtain read counts for each allele at each locus; these read counts were 203 

then used as input to PolyGen.   204 

Allele Frequency Estimation 205 
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We estimated allele frequencies for the simulated paralogs and the empirical paralogs by counting the 206 

observed occurrences of each allele in the genotypes output by PolyGen.  For the simulated data, we 207 

genotyped loci under tetraploid and diploid models to determine how genotyping unidentified paralogs as 208 

diploid loci affects allele frequency estimates. We then compared the estimated allele frequency to the 209 

true allele frequency for the simulated paralogs to assess accuracy in allele frequency estimation.   210 

Results 211 

Genotyping 212 

We simulated a dataset of 1,500 paralogs with varying average read depths from 10 to 150 reads per locus 213 

to examine: 1) genotype rate and 2) genotype accuracy and discrepancies.  Genotype rate per locus was 214 

influenced both by average read depth per locus as well as the locus minor allele frequency (Figure 1A).  215 

Reduced read depths resulted in a lower genotype rate, and for any given read depth, minor allele 216 

frequency was negatively correlated with genotype rate.  Genotype rate for a given read depth was 217 

strongly dependent on the underlying true genotype (Table 1).  Genotype rate for homozygous genotypes 218 

reached 99% at a read depth of only 26 but heterozygous genotypes required much greater read depths to 219 

reach similar genotype rates.  Heterozygous genotypes reached >95% genotype rate between 76 and 100 220 

reads.  The genotype rate for all genotypes was >99% between 126 and 150 reads.  Genotype accuracy 221 

was generally high with few miscalled genotypes at any read depth (Table 1).  A maximum miscall rate of 222 

~5% was seen for AABB heterozygotes with less than 25x coverage; this dropped to ~1.3% between 51x 223 

and 75x coverage.  There were essentially no miscalled genotypes for read depths above 76 with a 224 

maximum 0.5% incorrect calls for true AABB genotypes.  Read depths >100 resulted in genotype rates 225 

>95% and genotype accuracy >99% for all genotype classes. 226 

Plotting the allele ratio and read depth for each simulated genotype showed complete separation in allele 227 

ratio distributions for heterozygous genotypes after 150 reads; below 150 reads the amount of overlap 228 

increased with decreasing read depth (Figure 2 A).  Plotting assigned genotypes revealed that the pattern 229 

of uncalled genotypes coincided with regions of overlap in allele ratios between genotypes (Figure 2 B).  230 

A total of 17,810 RADSeq loci passed genotype rate and minor allele frequency filters; 2,806 (16%) of 231 

these loci were identified as paralogous by HDplot (Figure S1).  The average read depth per locus was 43 232 

and ranged from 5 to 112 (Figure S2A).  The genotype rate per locus was influenced both by average read 233 

depth per locus and minor allele frequency (Figure 1B) which was in concordance with results from the 234 

simulated data; however, the spread of genotype rate relative to average read depth was broader than in 235 

the simulated datasets.   236 
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Fifty-nine paralogs were developed into assays for amplicon sequencing.  Average depth was 817 reads   237 

with a range of 56 to 2164 (Figure S2B); average genotype rate was >99.9% with a range of 98.7% to 238 

100%. 239 

Histograms of allele ratios revealed clear peaks associated with each genotype class (Figure 3).  The three 240 

categories for disomically inherited paralogs (AABB diverged duplicates, Figure 3A) were easily 241 

distinguished from the five category plots for tetrasomically inherited paralogs (Figure 3B).     242 

Allele Frequency Estimation 243 

Allele frequency estimates were systematically biased towards 0.5 when the simulated paralogous loci 244 

were genotyped under diploid assumptions (Figure 4A).  Treating tetraploid loci as diploid led to elevated 245 

estimates of allele frequency for true frequencies less than 0.5 and decreased estimates for true 246 

frequencies greater than 0.5.  When simulated paralogous loci were genotyped under tetraploid 247 

assumptions, the estimated allele frequencies closely tracked the true allele frequencies but loci with low 248 

read depth showed a slight downward bias in estimated relative to true frequency for true frequencies less 249 

than 0.5 and a slight upward bias in estimated frequencies for true frequencies greater than 0.5 (Figure 250 

4B). 251 

Discussion 252 

Genotyping 253 

Accuracy of genotyping was high regardless of read depth but both read depth and minor allele frequency 254 

strongly influenced the call rate of paralogs (Figure 1A, Table 1).  This pattern was the result of genotype-255 

specific relationships between read depth and genotype rate.  Genotyping accuracy was >99.9% for 256 

homozygous genotypes at read depths of 26 whereas heterozygous genotypes required read depths of 257 

>100 to achieve similar accuracy (Table 1).  Loci with low minor allele frequency tend to have high 258 

genotype rates regardless of read depth because there are few heterozygous genotypes.  Loci with high 259 

minor allele frequency are more strongly influenced by read depth because of the greater proportion of 260 

heterozygous genotypes. 261 

The relationship among genotype rate, read depth, and minor allele frequency has important implications 262 

for downstream analyses.  Genotype rate filters are commonly used to identify high-quality loci in 263 

RADSeq datasets.  This could lead to systemic biases in the retained loci when applied to paralogous loci.  264 

A total of 1,471 paralogs in our RADSeq dataset (52% of total paralogs) were retained with a genotype 265 

rate filter of 80%.  The average minor allele frequency of the retained loci was much lower than the 266 

discarded loci (0.11 vs. 0.37).  For some analyses, such as site frequency spectrum, the bias introduced by 267 
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locus filtering alone would in turn lead to biased interpretations.  For loci that are retained, heterozygous 268 

individuals are more likely to have uncalled genotypes than homozygous individuals; this has the 269 

potential to skew results in studies with insufficient read depth to reliably genotype paralogs.  270 

Our simulations suggest that tetraploid paralogs can reach near-perfect genotyping at average read depths 271 

of 100.  While this depth is greater than found in most RADSeq studies, it is achievable with appropriate 272 

consideration of genome size, number of loci generated by RADSeq method, number of individuals 273 

sequenced, and sequencer output.  RADSeq methods that further reduce the number of sequenced loci, 274 

such as ddRAD (Peterson et al. 2012), could also be used to achieve greater sequence depth for 275 

genotyping paralogs.   276 

Amplicon sequencing, targeting a fixed locus set, is a more tractable solution to obtain sufficient read 277 

depth to genotype paralogs.  Amplicon sequencing methods such as GT-seq (Campbell et al. 2015) or 278 

RAD-capture (Ali et al. 2016) generally achieve greater read depth than RADSeq, and the number of 279 

individuals and loci sequenced per lane can be manipulated to achieve desired read depths.  We achieved 280 

a 19-fold increase in read depth for paralogs in the amplicon sequencing dataset relative to the RADSeq 281 

dataset.  We report the results for amplicon sequencing of 144 individuals and 59 loci, but note that the 282 

samples and loci in this study shared a sequencing lane with another project.  The average read depth of 283 

817 reads per paralogous locus was achieved with a total of 300 individuals and 1,200 loci sequenced on 284 

a single lane of an Illumina HiSeq 4000.  The results from our simulation as well as our amplicon data 285 

suggest that a read depth between 100 and 150 is adequate to reliably genotype paralogs.  Under this 286 

assumption we have room to increase our loci or samples 6 to 8 fold and still achieved sufficient read 287 

depth. 288 

Variation in reads per allele 289 

Multiple factors will contribute to the successful genotyping of paralogs.  We simulated variation in 290 

average read depth per locus to demonstrate the effect of read depth, but equally important is the variation 291 

in reads sequenced per allele at a locus.  In the simulated dataset, variation in reads per allele was 292 

modeled by assuming that each allele has an equal probability of being sequenced.  The RADSeq dataset 293 

showed more uncalled genotypes for a given depth than the simulated dataset, suggesting other sources of 294 

variation in reads per allele.  The contributing factors to variation in reads per allele are unclear; possible 295 

contributors include initial DNA quality, methods of library preparation, sequencing technology, and PCR 296 

duplicates.  Of these possibilities, the effect of PCR duplicates is easiest to ascertain; however, the 297 

Chinook salmon dataset was obtained using single-end sequencing, so PCR duplicates could not be 298 

identified. 299 
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Allele Frequency Estimation 300 

Accurate allele frequency estimates are important for assessing population genetic parameters such as 301 

FST

Importance of Paralogs in Population Genetics 315 

.  GBS datasets are typically filtered so that retained loci conform to HWE expectations for diploid 302 

loci.  This filtering method failed to identify approximately two-thirds of the paralogs in a previous 303 

Chinook salmon study (McKinney et al. 2017); it is likely that other studies using HWE expectations 304 

likely failed to identify a large proportion of paralogs, and these paralogs were subsequently genotyped as 305 

diploid loci.  Allele frequency estimates were systemically biased when paralogs were genotyped as 306 

diploid loci.  This problem is likely both common and unrecognized in organisms with mixed ploidy.  307 

Until recently it was difficult to reliably identify paralogs in GBS data, particularly in organisms with 308 

mixed ploidy, and many paralogs likely escaped detection.  Accurate paralog identification, either using 309 

genomic resources or tools such as HDplot, is a critical first step for accurately estimating allele 310 

frequencies.  If read depth is sufficient then individual genotypes could be obtained using PolyGen, 311 

allowing for allele frequency estimation.  If read depth is insufficient for inferring individual genotypes, 312 

then allele frequencies could be estimated using programs such as polyFreqs (Blischak et al. 2016) that 313 

estimate frequencies directly from read counts or by using presence/absence methods of allele scoring. 314 

Paralogs are commonly excluded from population genetic studies due to genotyping difficulties.  While 316 

exclusion has been a practical solution to a real problem, the impact of excluding paralogs is more than 317 

the loss of a few loci.  Drift and selection act differently on paralogs than non-paralogs, with selection 318 

acting more efficiently on paralogs due to increased effective population size (Meirmans & Van 319 

Tienderen 2013).  In addition, paralogs are often distributed non-randomly throughout the genome 320 

(Linardopoulou et al. 2005).  In duplicated salmonids, a large fraction of loci are retained as paralogs 321 

even though the majority of the genome has rediploidized.  These retained duplicates are concentrated in 322 

the distal ends of eight pairs of chromosome arms that are conserved across the salmonid genus 323 

Oncorhynchus (Brieuc et al. 2014; Kodama et al. 2014; Larson et al. 2016; Waples et al. 2016).  324 

Presumably many retained duplicates in other autotetraploids are distally located as well (see Allendorf et 325 

al. 2015; Limborg et al. 2016).  For these species, excluding paralogs in population genetics studies will 326 

result in the failure to interrogate entire regions of the genome.  Finally, different genomic regions can 327 

reveal different information about species histories.  For coalescent approaches, regions of genome 328 

duplication will have a deeper time to most recent common ancestor (TMRCA) than non-duplicated 329 

regions due to differences in effective population size (Allendorf et al. 2015).  The deeper TMRCA of 330 

duplicated regions could allow researchers to look back further in the demographic or evolutionary 331 

history than they could with non-duplicated regions. 332 
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Here we offer a solution for genotyping allele dosage in paralogs and demonstrate GBS approaches to 333 

successfully genotype and incorporate paralogs into population genetic analysis.  This method, in 334 

combination with recently developed methods for identifying paralogs in GBS datasets, will enable the 335 

incorporation of paralogs into population genetic analyses and unlock analysis of duplicated genomic 336 

regions. 337 

Acknowledgements 338 

We thank Wes Larson for providing constructive comments on the manuscript.  This research was 339 

partially funded by the Alaska Sustainable Salmon Fund under study #44812 and #44913 from NOAA, 340 

U.S. Department of Commerce, administered by the Alaska Department of Fish and Game (ADFG).  The 341 

statements, findings, conclusions and recommendations are those of the authors and do not necessarily 342 

reflect the views of the NOAA, the U.S. Department of Commerce, or the ADFG. 343 

Data Accessibility 344 

RADSeq data is available in NCBI SRA SRP129033. 345 

Amplicon sequencing data is available in NCBI SRA SRP129894. 346 

 347 

Supporting Information 348 

File S1.  R code for polygen algorithm. 349 

File S2.  R code to create simulated GBS read count data.  350 

Figure S1.  Results from HDplot for RADSeq dataset.  Read-ratio deviation (D, y-axis) is plotted against 351 

heterozygosity (H, x-axis).  Loci identified as singletons are in blue, loci identified as duplicates are in 352 

pink, and loci identified as diverged duplicates (disomically inherited duplicates) are in green. 353 

Figure S2.  Histogram of average read depth for paralogs identified in the datasets for: (A) RADSeq and 354 

(B) amplicon sequencing. 355 
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Table 1.  Percent genotype accuracy for simulated data divided into average read depth intervals of 1-25 482 

reads, 26-50, 51-75, 76-100, 101-25, and 126-150 reads.  Within each read depth interval rows are the 483 

true genotype while columns are the genotype inferred by PolyGen. 484 

1-25 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 95.0 0.3 0.0 0.0 0.0 4.8 

AAAB 1.8 49.9 1.2 0.0 0.0 47.2 

AABB 0.0 2.4 20.6 2.4 0.1 74.5 

ABBB 0.0 0.0 1.0 50.7 1.9 46.4 

BBBB 0.0 0.0 0.0 0.2 94.9 4.8 

       26-50 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 99.6 0.0 0.0 0.0 0.0 0.4 

AAAB 0.1 82.5 1.3 0.0 0.0 16.1 

AABB 0.0 1.4 67.2 1.8 0.0 29.6 

ABBB 0.0 0.0 1.1 84.3 0.2 14.4 

BBBB 0.0 0.0 0.0 0.0 99.4 0.5 

       51-75 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 100.0 0.0 0.0 0.0 0.0 0.0 

AAAB 0.0 93.6 0.6 0.0 0.0 5.8 

AABB 0.0 0.5 88.4 0.8 0.0 10.3 

ABBB 0.0 0.0 0.5 94.9 0.0 4.6 

BBBB 0.0 0.0 0.0 0.0 100.0 0.0 

       76-100 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 100.0 0.0 0.0 0.0 0.0 0.0 

AAAB 0.0 97.7 0.2 0.0 0.0 2.1 

AABB 0.0 0.2 95.7 0.3 0.0 3.8 

ABBB 0.0 0.0 0.2 98.3 0.0 1.5 

BBBB 0.0 0.0 0.0 0.0 100.0 0.0 

       101-125 Average Read Depth 
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True AAAA AAAB AABB ABBB BBBB 

AAAA 

unassigned 

100.0 0.0 0.0 0.0 0.0 0.0 

AAAB 0.0 99.1 0.1 0.0 0.0 0.8 

AABB 0.0 0.1 98.3 0.1 0.0 1.5 

ABBB 0.0 0.0 0.0 99.4 0.0 0.5 

BBBB 0.0 0.0 0.0 0.0 100.0 0.0 

       126-150 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 100.0 0.0 0.0 0.0 0.0 0.0 

AAAB 0.0 99.7 0.1 0.0 0.0 0.3 

AABB 0.0 0.0 99.4 0.1 0.0 0.5 

ABBB 0.0 0.0 0.0 99.8 0.0 0.2 

BBBB 0.0 0.0 0.0 0.0 100.0 0.0 

 485 

Figure 1.  Genotype rate vs. average read depth per locus for A) simulated paralogs and B) RADSeq 486 

paralogs.  Loci are displayed as dots and color coded by minor allele frequency (MAF).  In both the 487 

simulated and the RADSeq data, genotype rate is dependent upon read depth and minor allele frequency.  488 

Reduced read depths result in lower genotype confidence and a decreased genotype rate.  Loci with a 489 

lower minor allele frequency have an increased genotype rate relative to loci with a higher minor allele 490 

frequency for a given read depth. 491 
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 492 

 493 

Figure 2.  Patterns of observed allele ratios by read depth for all loci in the simulated data.  The true 494 

genotypes are shown in A and the inferred genotypes are shown in B.  The pattern of unassigned 495 

genotypes mirrored regions of significant overlap in allele ratios among true genotypes. 496 
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 497 

 498 

Figure 3. Histograms of observed allele ratios for A) locus RAD25055_38 and B) locus RAD48683_32 499 

in the amplicon sequencing dataset.  Allele ratio is given on the x-axis and number of individuals for each 500 

allele ratio is given on the y-axis.  Locus RAD25055_38 had an average read depth of 505 and a 99% 501 

genotype rate.  Only three genotype classes are seen in locus RAD25055_38 because the paralogs are 502 

inherited as independent disomic loci and one paralog has no allelic variation.  Locus RAD48683_32 had 503 

an average read depth of 1,393 and exhibits all five genotype classes which is consistent with a 504 

tetrasomically inherited paralog. 505 
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 506 

 507 

Figure 4.  Allele frequency estimates for simulated duplicate loci when treated as A) diploid or B) 508 

tetraploid.  Each dot is a locus, the true tetraploid allele frequency is given on the x-axis and the estimated 509 

allele frequency is given on the y-axis.  The diagonal line shows the 1:1 relationship expected if estimated 510 

allele frequencies matched true allele frequencies.  Allele frequency estimates are coded on a grayscale by 511 

the average read depth in B.  Allele frequency estimates show a systemic bias when tetraploid loci are 512 

treated as diploid.  Allele frequency estimates are accurate for read depths > 30 when tetraploid loci are 513 

genotyped with the correct ploidy but low read depth loci show a bias in allele frequency estimates. 514 
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Table 1.  Percent genotype accuracy for simulated data divided into average read depth intervals of 1-25 

reads, 26-50, 51-75, 76-100, 101-25, and 126-150 reads.  Within each read depth interval rows are the 

true genotype while columns are the genotype inferred by PolyGen. 

1-25 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 95.0 0.3 0.0 0.0 0.0 4.8 

AAAB 1.8 49.9 1.2 0.0 0.0 47.2 

AABB 0.0 2.4 20.6 2.4 0.1 74.5 

ABBB 0.0 0.0 1.0 50.7 1.9 46.4 

BBBB 0.0 0.0 0.0 0.2 94.9 4.8 

       26-50 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 99.6 0.0 0.0 0.0 0.0 0.4 

AAAB 0.1 82.5 1.3 0.0 0.0 16.1 

AABB 0.0 1.4 67.2 1.8 0.0 29.6 

ABBB 0.0 0.0 1.1 84.3 0.2 14.4 

BBBB 0.0 0.0 0.0 0.0 99.4 0.5 

       51-75 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 100.0 0.0 0.0 0.0 0.0 0.0 

AAAB 0.0 93.6 0.6 0.0 0.0 5.8 

AABB 0.0 0.5 88.4 0.8 0.0 10.3 

ABBB 0.0 0.0 0.5 94.9 0.0 4.6 

BBBB 0.0 0.0 0.0 0.0 100.0 0.0 

       76-100 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 100.0 0.0 0.0 0.0 0.0 0.0 

AAAB 0.0 97.7 0.2 0.0 0.0 2.1 

AABB 0.0 0.2 95.7 0.3 0.0 3.8 

ABBB 0.0 0.0 0.2 98.3 0.0 1.5 

BBBB 0.0 0.0 0.0 0.0 100.0 0.0 

       101-125 Average Read Depth 
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True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 100.0 0.0 0.0 0.0 0.0 0.0 

AAAB 0.0 99.1 0.1 0.0 0.0 0.8 

AABB 0.0 0.1 98.3 0.1 0.0 1.5 

ABBB 0.0 0.0 0.0 99.4 0.0 0.5 

BBBB 0.0 0.0 0.0 0.0 100.0 0.0 

       126-150 Average Read Depth 

True AAAA AAAB AABB ABBB BBBB unassigned 

AAAA 100.0 0.0 0.0 0.0 0.0 0.0 

AAAB 0.0 99.7 0.1 0.0 0.0 0.3 

AABB 0.0 0.0 99.4 0.1 0.0 0.5 

ABBB 0.0 0.0 0.0 99.8 0.0 0.2 

BBBB 0.0 0.0 0.0 0.0 100.0 0.0 
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